THE STRUCTURE
OF 2-OXO-8 $\alpha$-ANGELOYLOXY-11 $\alpha$-ACETOXY-5 $\beta \mathrm{H}, 6 \alpha \mathrm{H}, 7 \alpha \mathrm{H}$-GUAI--1(10),3-DIEN-6,12-OLIDE, A SESQUITERPENIC LACTONE
FROM Laserpitium prutenicum L. REVISION OF THE STEREOSTRUCTURES OF NATIVE 2-OXOGUAI-1(10),3-DIEN-6,12-OLIDES FROM THE SPECIES OF THE Umbelliferae FAMILY*

Urszula Rychlewska ${ }^{a}$, Derek J. Hodgson ${ }^{b}$, Miroslav Holub ${ }^{c}$, Miloš Buděšínsky ${ }^{c}$ and Zdeňka Smítalová ${ }^{c}$<br>${ }^{a}$ Faculty of Chemistry, A. Mickiewicz University, 60-780 Poznań, Poland,<br>${ }^{b}$ Department of Chemistry, University of North Carolina, Chapel Hill, N.C. 27514, U.S.A. and<br>${ }^{c}$ Institute of Organic Chemistry and Biochemistry,<br>Czechoslovak Academy of Sciences, 16610 Prague 6, Czechoslovakia

Received February 19th, 1985


#### Abstract

On the basis of an analysis of its NMR spectra and X-ray analysis the stereostructure of the so-called 4 -acetoxypruteninone-(10) (laferin) has been corrected to that of formula $I$. The stereostructures of almost all so far described native 2 -oxoguai-1 (10), 3 -dien- 6,12 -olides isolated from the species of Umbelliferae have been corrected on the basis of ${ }^{1} \mathrm{H}$ NMR parameters.


In connection with a systematic study of sesquiterpenic lactones of the species of the Umbelliferae family we investigated the species Laserpitium prutenicum L. (Laserpitieae tribe). This plant material was analyzed by Bohlmann and Zdero ${ }^{1}$ a number of years ago. Of the four sesquiterpenic lactones described by them we now investigated lactone $I$ which these authors called 4 -acetoxypruteninone-(10) in accordance with the different numbering of the guaiane skeleton used at that time, and proposed ${ }^{1}$ for it the structure Ia. Later, this lactone was obtained under the name laferin from Ferula olgae Regel. et Schmalh. (Umbelliferae family, Peucedaneae tribe), and its originally proposed structure was corrected ${ }^{2}$ to $I b$. From the point of view of components - sesquiterpenic lactones - lactone $I$ represents a connection between the Laserpitieae and Peucedaneae tribe (for example the genera Laserpitium and Ferula, respectively), as do some further sesquiterpenic lactones, as for example shairidin (II), isolated from Ferula varia (Schrenk) Trautv. (Peucedaneae) ${ }^{3}$ and Guillonea scabra (CAV.) Cosson (Laserpitieae) ${ }^{4}$, or malafilinin (III), obtained from F. mallacophyla M. Pimenov et J. Baranova ${ }^{5}$, and also from G. scabra ${ }^{6}$.

* Part CCLXXXVIII in the series On Terpenes; Part CCLXXXVII: This Journal 50, 1878 (1985).

In the species of the Laserpitieae tribe guaianolides of predominantly slov-3-enolide type have been found so far, i.e. $1 \beta \mathrm{H}, 5 \beta \mathrm{H}, 6 \alpha \mathrm{H}, 7 \alpha \mathrm{H}$-guai-3-en- 6,12 -olide with $7(R)$ configuration ${ }^{7}(I V)$, while in the species of the Peucedaneae tribe they were guaianolides of predominantly 2 -oxoguai-1(10),3-dien-6,12-olide ${ }^{7}(V)$ type. The stereostructures of the guaianolides of the mentioned type $V$ from the species of Umbelliferae described so far and derived by means of X-ray structural analysis, i.e. grilactone ${ }^{8}$ (VI), desangeloylshairidin ${ }^{9}(V I I)$, and guillonein ${ }^{10}(V I I I)$, indicated that the stereostructures of the guaianolides of type $V$ described so far, from the species Umbelliferae, for which originally the structures based on $2-\mathrm{oxo}-5 \alpha \mathrm{H}, 6 \beta \mathrm{H}, 7 \alpha \mathrm{H}$-guai-1(10), 3-dien-6, 12 -olide ${ }^{7}(I X)$ were proposed, will not be correct. We supposed that the study of the structure of lactone $I$, especially by means of ${ }^{1} \mathrm{H}$ NMR spectroscopy and X-ray structural analysis would confirm the structure of this substance assumed by us, based on 2 -oxo- $5 \beta \mathrm{H}, 6 \alpha \mathrm{H}, 7 \alpha \mathrm{H}$-guai-I $(10), 3$-dien- 6,12 -olide ${ }^{7}(X)$, and bring further evidence for the solution of the stereostructures of guaianolides from the species of Uimbelliferae.


I: $\mathrm{R}^{1}=\mathrm{Ac} ; \mathrm{R}^{2}=\mathrm{Ang}$
III: $\mathrm{R}^{1}==\mathrm{Ac} ; \mathrm{R}^{2}=\mathrm{Bzl}$
$X X X: \mathrm{R}^{1}, \mathrm{R}^{2}=$ Ang
$X X X I I ; \mathrm{R}^{1}=$ Ang; $\mathrm{R}^{2}=$ Ver
XXXIII: $\mathrm{R}^{1}=$ Sen; $\mathrm{R}^{2}=$ Ans
$X X X I V: \mathrm{R}^{1}=\mathrm{Sen} ; \mathrm{R}^{2}=\mathrm{Bzl}$
$X X X V: \mathrm{R}^{1}=\mathrm{Ac} ; \mathrm{R}^{2}=$ Ans
$X X X V I: \mathrm{R}^{1}=\mathrm{Sen} ; \mathrm{R}^{2}=\mathrm{Ver}$
XXXVII: $\mathrm{R}^{1}=\mathrm{Ac} ; \mathrm{R}^{2}=\mathrm{Ver}$
$X X X V I I I: \mathrm{R}^{1}=\mathrm{i}$ But; $\mathrm{R}^{2}=$ Mac
$X X X I X: \mathrm{R}^{1}=\mathrm{Ac} ; \mathrm{R}^{2}=\mathrm{Mac}$
$X L: \mathrm{R}^{1}, \mathrm{R}^{2}=\mathrm{Mac}$
$X L I: \mathrm{R}^{1}=\mathrm{i}$ But; $\mathrm{R}^{2}=$ Ang


Ia: $\mathrm{R}^{1}=\mathrm{Ang} ; \mathrm{R}^{2} \ldots \mathrm{Ac}$
$I b: \mathbf{R}^{\mathbf{1}}=\mathrm{Ac} ; \mathbf{R}^{2} \ldots \mathrm{Ang}$


IV


II: $\mathrm{R}=$ Ang VII: $\mathrm{R}=\mathrm{H}$


V

The results of X-ray structural analysis of lactone $I$ show (Fig. 1) that the configuration at the ring junction is such that $\mathrm{H}(5), \mathrm{O}(6)$, and $\mathrm{C}(11)$ are all above the approximate plane of the seven-membered ring (i.e. they are all $\beta$ ) and hence that the configuration is $5 \beta \mathrm{H}, 6 \alpha \mathrm{H}$, and $7 \alpha \mathrm{H}$. Moreover, since the acetoxy group is at $C(11)$ and the angeloyloxy group is at $C(8)$, and both are $\alpha$, the structure of the studied lactone is that depicted in $I$. The molecule should presumably be renamed 2 -oxo-

- $8 \alpha$-angeloyloxy-11 $\alpha$-acetoxy- $5 \beta \mathrm{H}, 6 \alpha \mathrm{H}, 7 \alpha \mathrm{H}$-guai-1(10),3-dien-6,12-olide. Hence the structures $I a$ and $I b$, initially assigned ${ }^{1,2}$ and subsequently cited in the authoritative reviews by Fisher and coworkers ${ }^{11}$ and by Seaman ${ }^{12}$, are not correct. The structural analysis demonstrates that the ring junction configuration in this compound is analogous to that in the slovanolides ${ }^{13}$ and in grilactone ${ }^{8}$. The atomic positional parameters, principal bond lenghts and angles are listed in Tables I-III.

The seven-membered substituted cycloheptene ring adopts a flattened chair conformation, the approximate mirror plane passing through $C(10)$ and the midpoint of the $C(6)-C(7)$ bond. Thus, the flattening is such that the atoms $C(5), C(1)$, $C(10), C(9)$, and $C(8)$ are approximately co-planar (maximum deviation 0.073 (6) $\AA$ ) while atoms $C(6)$ and $C(7)$ are both above this plane $(1.264(6)$ and 1.067 (6) $\AA$, respectively).

The cyclopentenone ring is approximately planar, with no atom deviating by more than 0.020 (6) $\AA$ from the least-squares plane. A similar result was observed by Ruban and coworkers ${ }^{14}$ in the structure of lactucin $(X I)$, which also contains a keto


Fig. 1
View of one molecule of lactone $I$. Thermal ellipsoids are drawn at the $47 \%$ probability level; hydrogen atoms are omitted for clarity

[^0]

VI


X


VIII

$X I: \mathrm{R}=\mathrm{H}$
XIII: $\mathrm{R}=\mathrm{Phac}-\mathrm{OH}$

$I X$

$X I I: \mathrm{R}^{1} O O A c ; \mathrm{R}^{2}=\mathrm{CH}_{3}$
$X I V: \mathrm{R}^{1} \mathrm{H} ; \mathrm{R}^{2}=\mathrm{CH}_{3}$
$X V: \mathrm{R}^{1}=\mathrm{OH} ; \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OH}$
$X X V: \mathrm{R}^{1}=O A c ; \mathrm{R}^{2}=\mathrm{CHO}$
$X X V I: \mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{CH}_{2} O A c$
group at $C(2)$ and double bonds at $C(1)=C(10)$ and $C(3)=C(4)$; the average magaitude of the endocyclic torsion angles in the cyclopentenone moiety in the present case is $2.3^{\circ}$, while in lactucin ${ }^{14}(X I)$ it is only $0.7^{\circ}$. As is common ${ }^{8.15 .16}$ in cis-fused $\gamma$-lactones, the lactone ring is also fairly flat; in the present structure the maximum torsion angle in the lactone ring is $17.7^{\circ}$, which suggests that this ring is flatter here than in the other slovanolide analogues ${ }^{8.15 .16}$. The torsion angles in the molecule are collected in Table IV.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of lactone $I$ (data in Table V) are fully consistent with the structure determined by X-ray analysis. The ${ }^{13} \mathrm{C}$ NMR spectrum indicated the presence of 15 carbons in the guaianolide skeleton and 7 signals which were assigned to an acetate and angelate group on the basis of known data for ester groups ${ }^{17.18}$. Of the skeletal carbons the conjugated and the lactone carbonyl could be easily assigned to the signals at $\delta 194.97$ and 173-27. The signals of four olefinic carbons ( $\delta 169 \cdot 12 ; 145 \cdot 15 ; 136 \cdot 13$, and 129.05 ) were assigned to carbons $\mathrm{C}(4), \mathrm{C}(10), \mathrm{C}(3)$, and $\mathrm{C}(1)$ on the basis of multiplicity (only $\mathrm{C}(3)$ at $\delta 136 \cdot 13$ carries a hydrogen) and a comparison with the ${ }^{13} \mathrm{C}$ NMR data of cyclopentenone ${ }^{19,20}$. The signals at $\delta 78 \cdot 43$, $77 \cdot 93$, and 67.02 were assigned to $s p^{3}$ carbon atoms carrying oxygen, i.e. $\mathrm{C}(6), \mathrm{C}(11)$, and $C(8)$, similarly as the signals at $\delta 48 \cdot 00,47 \cdot 31$, and $43 \cdot 97$ were assigned to carbon
$C(5), C(7)$, and $C(9)$, mainly on the basis of comparison with the ${ }^{13} \mathrm{C}$ NMR data of structurally similar compounds. The assignment of the methyl signals $\mathrm{C}(13)$, $\mathrm{C}(14)$, and $\mathrm{C}(15)$ which occur within a narrow range of $\delta$ values, between 20.0 and $20 \cdot 8$, is only tentative. Very important information was obtained from the undecoupled ${ }^{13} \mathrm{C}$ NMR spectrum, where the acetate could be classified ${ }^{21}$ as tertiary and localised at $\mathrm{C}(11)$ on the basis of the signal of acetate carbonyl ( $\delta 169 \cdot 91$, quartet, $J=3.5 \mathrm{~Hz}$ ). Hence, the angelate must be in position $\mathrm{C}(8)$. In the ${ }^{1} \mathrm{H}$ NMR spectrum

Table I
Atomic positional parameters for $2-\mathrm{Oxo}-8 \alpha$-angeloyloxy-11 $\alpha$-acetoxy- $5 \beta \mathrm{H}, 6 \alpha \mathrm{H}, 7 \alpha \mathrm{H}$-guai-1(10), 3-dien-6,12-olide (I)

| Atom | $X$ | $Y$ | 7 |
| :---: | :---: | :---: | :---: |
| $O(2)$ | 0.7228(4) | $0.0769(2)$ | 0.9253(4) |
| O(6) | 0.5773(3) | -0.2338(2) | 1-1309(4) |
| O(8) | 0.9444(3) | -0.2639(2) | 1-1915(4) |
| $\mathrm{O}(11)$ | 0.7587(4) | $-0.3894(2)$ | $1 \cdot 2178(4)$ |
| $\mathrm{O}(12)$ | $0 \cdot 5322(3)$ | $-0.3437(3)$ | 1-2469(5) |
| O(16) | 0.6812(4) | -0.4021(3) | 1-0272(5) |
| O(18) | 1.0466(4) | $-0.1833(3)$ | $1 \cdot 3149(5)$ |
| C(1) | 0.7504(5) | -0.0496(3) | 1.0506(5) |
| C(2) | 0.6903(5) | $0.0232(3)$ | $0.9964(6)$ |
| C(3) | $0 \cdot 5816(5)$ | $0.0150(4)$ | 1.0435(6) |
| C(4) | 0.5683(5) | -0.0536(3) | $1 \cdot 1130(6)$ |
| C(5) | 0.6733(5) | $-0.0990(3)$ | $1 \cdot 1283(6)$ |
| $C(6)$ | 0.6719(5) | -0.1920(4) | 1.0851(6) |
| C(7) | $0.7684(5)$ | $-0.2445(3)$ | $1 \cdot 1275(6)$ |
| C(8) | 0.8672(4) | $-0.1978(4)$ | $1 \cdot 1700(6)$ |
| C(9) | 0.9145(5) | -0.1404(4) | 1.0690(6) |
| C(10) | $0.8526(5)$ | -0.0662(3) | 1.0228(6) |
| C(11) | $0 \cdot 7207(5)$ | $-0.3038(3)$ | $1 \cdot 2277(6)$ |
| C(12) | 0.6005(5) | $-0.3004(4)$ | 1-2034(6) |
| C(13) | $0.7378(6)$ | $-0.2811(4)$ | 1-3643(6) |
| C(14) | $0.9188(6)$ | -0.0132(4) | $0.9375(7)$ |
| C(15) | $0 \cdot 4666(5)$ | -0.0794(4) | 1-1731(7) |
| C(16) | $0.7321(6)$ | -0.4313(4) | 1-1108(8) |
| C(17) | 0.7784(7) | -0.5174(4) | 1-1195(11) |
| C(18) | 1.0288(5) | $-0.2502(4)$ | 1-2628(6) |
| C(19) | $1 \cdot 0984(5)$ | $-0.3276(5)$ | $1 \cdot 2696(7)$ |
| C(20) | 1-1962(7) | $-0 \cdot 3240(5)$ | 1-2791(8) |
| C(21) | 1-2671(6) | -0.2506(5) | 1-2802(8) |
| C(22) | 1.0378(7) | $-0.4106(4)$ | 1-2589(8) |

all hydrogens were structurally assigned and their spin-spin interactions were determined (Table V). Since the configurations on carbons $C(5), C(6), C(7)$, and $C(8)$ are known from X-ray analysis, the coupling constants measured can be used for the determination of the conformation of lactone $I$ in solution. The high values of $J_{5,6}$ and $J_{7,8}(11.4$ and $11 \cdot 2$, respectively) indicate a trans arrangement of the hydrogens $H(5), H(6)$ or $H(7), H(8)$, with dihedral angles close to $180^{\circ}$. Only the slightly lower value $J_{6,7}=9 \cdot 9 \mathrm{~Hz}$ requires a dihedral angle $\approx 0^{\circ}$ for cis-oriented hydrogens $\mathrm{H}(6), \mathrm{H}(7)$. The distinctly different values of the constants $J_{8,9}$ and $J_{8,9}$, ( 3.4 and 10.9 Hz ) indicate a gauche and anti arrangement of hydrogens in the fragment $-\mathrm{C}(8) \mathrm{H}-\mathrm{C}(9) \mathrm{H}_{2}$ unambigously. The very high observed value of the geminal interaction $J_{9,9^{\prime}}=19.2 \mathrm{~Hz}$ is evidently a consequence of a hyperconjugation contribution $\Delta J$ of the vicinal double bond $\mathrm{C}(10)=\mathrm{C}(1)$. It is known ${ }^{22,23}$ that $\Delta J$ depends on the orientation of the $\mathrm{C}-\mathrm{H}$ bonds with respect to the $\pi$-electrons of the $\mathrm{C}=\mathrm{C}$ bond and that it is maximum $(\Delta J \approx 4 \mathrm{~Hz})$ when the $\mathrm{C}-\mathrm{H}$ bonds make an angle of $30^{\circ}$ with the $\pi$-electrons. This situation takes place just in the case of lactone $I$ in the conformation determined by X-ray analysis in the crystal. Since this conformation also fulfils all the above discussed geometric relations of hydrogens, derived from $J_{\mathrm{H}, \mathrm{H}}$ values, it may be concluded that the preferred conformation of lactone $I$ in solution is in agreement with the spatial arrangement (Fig. 1) found in crystal.

Table II
Bond lengths ( $\AA$ ) in lactone $I$

| Atoms | Distance | Atoms | Distance |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(1), \mathrm{C}(2)$ | 1.501(5) | C(10), C(14) | 1.491(5) |
| C(1), C(5) | 1-495(5) | C(11), C(12) | 1.527(6) |
| $\mathrm{C}(1), \mathrm{C}(10)$ | $1 \cdot 339(5)$ | C(11), C(13) | 1.512(6) |
| C(2), C(3) | $1 \cdot 455(6)$ | $\mathrm{C}(11), \mathrm{O}(11)$ | 1-452(5) |
| $\mathrm{C}(2), \mathrm{O}(2)$ | 1-214(4) | $\mathrm{C}(12), \mathrm{O}(6)$ | $1 \cdot 347(5)$ |
| C(3), C(4) | 1-332(5) | $\mathrm{C}(12), \mathrm{O}(12)$ | $1 \cdot 192(5)$ |
| C(4), C(5) | $1 \cdot 510(5)$ | $\mathrm{C}(16), \mathrm{C}(17)$ | 1-495(7) |
| C(4), C(15) | 1-482(6) | $\mathrm{C}(16), \mathrm{O}(11)$ | 1-361(7) |
| C(5), C(6) | $1 \cdot 555(5)$ | $\mathrm{C}(16), \mathrm{O}(16)$ | $1 \cdot 189(6)$ |
| C(6), C(7) | 1-538(5) | C(18), C(19) | 1.515(6) |
| $\mathrm{C}(6), \mathrm{O}(6)$ | 1.443(5) | $\mathrm{C}(18), \mathrm{O}(8)$ | 1-317(5) |
| C(7), C(8) | $1 \cdot 513(5)$ | $\mathrm{C}(18), \mathrm{O}(18)$ | $1 \cdot 224(5)$ |
| $\mathrm{C}(7), \mathrm{C}(11)$ | 1-544(5) | C(19), C(20) | $1.228(7)$ |
| C(8), C(9) | 1-530(5) | C(19), C(22) | 1.531(7) |
| $\mathrm{C}(8), \mathrm{O}(8)$ | 1.449(4) | $C(20) C,(21)$ | $1.470(8)$ |
| $\mathrm{C}(9), \mathrm{C}(10)$ | $1 \cdot 499(5)$ |  |  |

## Table III

Bond angles (deg) in lactone $I$

| Atoms | Angle |
| :---: | :---: |
| $C(2), C(1), C(5)$ | 107.4(3) |
| $\mathrm{C}(2), \mathrm{C}(1), \mathrm{C}(10)$ | 123.1(4) |
| $\mathrm{C}(5), \mathrm{C}(1), \mathrm{C}(10)$ | 129.4(3) |
| $\mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(3)$ | 105.4(4) |
| $\mathrm{C}(1), \mathrm{C}(2), \mathrm{O}(2)$ | 128.3(4) |
| $\mathrm{C}(3), \mathrm{C}(2), \mathrm{O}(2)$ | 126.3(4) |
| $\mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(4)$ | $112.5(4)$ |
| $\mathrm{C}(3), \mathrm{C}(4), \mathrm{C}(5)$ | 110.3(3) |
| $\mathrm{C}(3), \mathrm{C}(4), \mathrm{C}(15)$ | 125.1(4) |
| $\mathrm{C}(5), \mathrm{C}(4), \mathrm{C}(15)$ | 124.5(3) |
| $\mathrm{C}(1), \mathrm{C}(5), \mathrm{C}(4)$ | 104.4(3) |
| $\mathrm{C}(1), \mathrm{C}(5), \mathrm{C}(6)$ | 110.4(3) |
| $\mathrm{C}(4), \mathrm{C}(5), \mathrm{C}(6)$ | 114.7(3) |
| $\mathrm{C}(5), \mathrm{C}(6), \mathrm{C}(7)$ | 115.2(3) |
| $\mathrm{C}(5), \mathrm{C}(6), \mathrm{O}(6)$ | 110.6(3) |
| $\mathrm{C}(7), \mathrm{C}(6), \mathrm{O}(6)$ | 107.0(3) |
| $\mathrm{C}(6), \mathrm{C}(7), \mathrm{C}(8)$ | 117.4(3) |
| $\mathrm{C}(6), \mathrm{C}(7), \mathrm{C}(11)$ | 103.5(3) |
| $\mathrm{C}(8), \mathrm{C}(7), \mathrm{C}(11)$ | 114.3(3) |
| $\mathrm{C}(7), \mathrm{C}(8), \mathrm{C}(9)$ | 113.7(3) |
| $\mathrm{C}(7), \mathrm{C}(8), \mathrm{O}(8)$ | 103.5(3) |
| $\mathrm{C}(9), \mathrm{C}(8), \mathrm{O}(8)$ | 106.8(3) |
| $\mathrm{C}(8), \mathrm{C}(9), \mathrm{C}(10)$ | 120.3(3) |
| $\mathrm{C}(1), \mathrm{C}(10), \mathrm{C}(9)$ | 125.2(4) |
| $\mathrm{C}(1), \mathrm{C}(10), \mathrm{C}(14)$ | 123.5(3) |
| $\mathrm{C}(9), \mathrm{C}(10), \mathrm{C}(14)$ | 111.2(3) |
| $\mathrm{C}(7), \mathrm{C}(11), \mathrm{C}(12)$ | 104.0(4) |
| $\mathrm{C}(7), \mathrm{C}(11), \mathrm{C}(13)$ | 117.4(3) |
| $\mathrm{C}(7), \mathrm{C}(11), \mathrm{O}(11)$ | 113.7(3) |
| $\mathrm{C}(12), \mathrm{C}(11), \mathrm{C}(13)$ | 107.0(4) |
| $\mathrm{C}(12), \mathrm{C}(11), \mathrm{O}(11)$ | 110.1(3) |
| $\mathrm{C}(13), \mathrm{C}(11), \mathrm{O}(11)$ | 104.4(3) |
| $\mathrm{C}(11), \mathrm{C}(12), \mathrm{O}(6)$ | 109.7(4) |
| $\mathrm{C}(11), \mathrm{C}(12), \mathrm{O}(12)$ | 128.3(4) |
| $\mathrm{O}(6), \mathrm{C}(12), \mathrm{O}(12)$ | 121.7(4) |
| $\mathrm{C}(17), \mathrm{C}(16), \mathrm{O}(11)$ | 107.8(6) |
| $\mathrm{C}(17), \mathrm{C}(16), \mathrm{O}(16)$ | 127.9(7) |
| $\mathrm{O}(11), \mathrm{C}(16), \mathrm{O}(16)$ | 124.3(5) |
| $\mathrm{C}(19), \mathrm{C}(18), \mathrm{O}(8)$ | 110.6(4) |
| $\mathrm{C}(19), \mathrm{C}(18), \mathrm{O}(18)$ | 125.9(4) |
| $\mathrm{O}(8), \mathrm{C}(18), \mathrm{O}(18)$ | 123.5(4) |

Table III
(Continued)

| Atoms | Angle |
| :---: | :---: |
|  | $C(18), \mathrm{C}(19), \mathrm{C}(20)$ |
| $\mathrm{C}(18), \mathrm{C}(19), \mathrm{C}(22)$ | $122 \cdot 5(6)$ |
| $\mathrm{C}(20), \mathrm{C}(19), \mathrm{C}(22)$ | $122 \cdot 7(4)$ |
| $\mathrm{C}(19), \mathrm{C}(20), \mathrm{C}(21)$ | $129 \cdot 7(6)$ |
| $\mathrm{C}(6), \mathrm{O}(6), \mathrm{C}(12)$ | $112 \cdot 4(3)$ |
| $\mathrm{C}(8), \mathrm{O}(8), \mathrm{C}(18)$ | $120 \cdot 2(3)$ |
| $\mathrm{C}(11), \mathrm{O}(11), \mathrm{C}(16)$ | $116 \cdot 3(4)$ |

The earlier erroneous conclusions ${ }^{1,2}$ made from the NMR data of lactone $I$ and a grave suspicion concerning similar mistakes for a series of further substances led us to an attempt at critical evaluation of the situation and the possibilities of discriminating trans- and cis-lactones of type $I X$ and $X$. An analysis of models shows (Fig. 2) that trans-lactones of type $I X$ can assume two types of conformation, $A$ and $B$ (Fig. 2), analogous to the conformations found ${ }^{10}$ for guillonein (VIII) in crystal (type $A$ ) and in solution (type $B$ ). The situation in cis-lactones is similar, where two conformational types, $C$ and $D$ (Fig. 2) can be found, of which type $C$ represents the average state of two similar limit forms $C(a)$ and $C(b)$, which corresponds to the conformation found in this paper for lactone $I$. Type $D$ seems unlikely in view of the unfavourable steric interactions of 1,3-diaxial hydrogens $\mathbf{H}(5), H(9)$ with $\mathbf{C}(11)$ and may be also $\mathrm{C}(11)$-methyl. In Fig. 2 the values of dihedral angles of $\Phi_{\mathrm{H}, \mathbf{H}}$ hydrogens in positions 5 to 9 are also presented, as well as the approximate values of the $J_{\mathbf{H}, \mathbf{H}}$ constants corresponding to these angles on the basis of the described relationship $J_{\mathrm{H}, \mathrm{H}}=\mathrm{f}(\Phi)\left(\right.$ ref. ${ }^{24}$ ). It is evident from the figure that the value $J_{5,6}$ will be approximately the same for cis- and trans-lactones in all conformational types $A$ to $D$. Similarly, in $J_{6,7}$ very similar values ( $\geqq 10 \mathrm{~Hz}$ ) may be expected for trans-lactones (types $A, B$ ) and cis-lactones in the conformation of type $C$. The limit forms $C(a)$ and $C(b)$ could have slighly lower values, and type $D$ distinctly lower values. However the occurence of the latter type is not very probable. Since Fig. 2 shows even for constants $J_{7,8}$ and $J_{8,9}$ that analogous values as in cis-lactone with conformation of $C$-type can be found at least in one of the possible conformations $(A, B)$ of the trans-lactone, it is evident that the utilization of vicinal $J_{\mathrm{H}, \mathrm{H}}$ only for the differentiation between trans and cis-lactones of type $I X$ and $X$ is very problematic. Therefore we focussed our attention on the finding of further possible NMR criteria for both groups of lactones of types $I X$ and $X$. The available ${ }^{1} \mathrm{H}$ NMR data for these substances indicated distinct differences in chemical shifts of hydrogens $H(6)$ the

Table IV
Torsion angles (deg) in lactone $I$

| Atom 1 | Atom 2 | Atom 3 | Atom 4 | Angle |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}(10)$ | C(1) | $\mathrm{C}(2)$ | C(3) | $176 \cdot 2$ |
| C(5) | C(1) | C (2) | C(3) | $0 \cdot 3$ |
| $\mathrm{C}(10)$ | C(1) | $\mathrm{C}(2)$ | O(2) | -- 1.8 |
| C(5) | C(1) | C (2) | $O(2)$ | $-177 \cdot 7$ |
| C(1) | $\mathrm{C}(2)$ | $\mathrm{C}(3)$ | C(4) | -. 2.5 |
| O(2) | C(2) | C(3) | C(4) | $175 \cdot 5$ |
| C(2) | C(3) | C(4) | C(15) | -179.6 |
| C(2) | $\mathrm{C}(3)$ | C(4) | C(5) | $3 \cdot 7$ |
| C(3) | C(4) | C(5) | C(1) | - 3.3 |
| C(3) | C(4) | C(5) | C(6) | -124.2 |
| $\mathrm{C}(15)$ | C(4) | C(5) | C(1) | $180 \cdot 0$ |
| C(15) | C(4) | C(5) | $\mathrm{C}(6)$ | 59.0 |
| C(4) | C(5) | C(1) | C (2) | 1.6 |
| C(4) | C(5) | C(1) | $\mathrm{C}(10)$ | -173.9 |
| C(6) | C(5) | $\mathrm{C}(1)$ | $\mathrm{C}(2)$ | 125.4 |
| C(6) | C(5) | $\mathrm{C}(1)$ | $\mathrm{C}(10)$ | - $50 \cdot 2$ |
| C(1) | C(5) | C(6) | C(7) | 76.0 |
| C(4) | C(5) | C(6) | C(7) | $-166.4$ |
| C(1) | C(5) | C(6) | $\mathrm{O}(6)$ | $-162.5$ |
| C(4) | C(5) | C(6) | O(6) | -- 45.0 |
| C(5) | C(6) | $\mathrm{C}(7)$ | $\mathrm{C}(8)$ | - 17.9 |
| C(5) | C(6) | C(7) | C(11) | 109.1 |
| O (6) | C(6) | C(7) | C(8) | $-141 \cdot 3$ |
| $\mathrm{O}(6)$ | C(6) | $\mathrm{C}(7)$ | C(11) | $-14.3$ |
| $\mathrm{C}(6)$ | C(7) | C(8) | $\mathrm{C}(9)$ | - 59.4 |
| C(6) | C(7) | C(8) | $\mathrm{O}(8)$ | -174.9 |
| C(11) | C(7) | C(8) | $\mathrm{C}(9)$ | 179.1 |
| C(11) | C(7) | C(8) | $\mathrm{O}(8)$ | $63 \cdot 6$ |
| C(7) | $\mathrm{C}(8)$ | $\mathrm{C}(9)$ | $\mathrm{C}(10)$ | $65 \cdot 2$ |
| $\mathrm{O}(8)$ | C(8) | $\mathrm{C}(9)$ | $\mathrm{C}(10)$ | 178.6 |
| C(8) | C(9) | $\mathrm{C}(10)$ | C(1) | - 9.0 |
| C(8) | $\mathrm{C}(9)$ | $\mathrm{C}(10)$ | C(14) | 172.7 |
| C(9) | C(10) | $\mathrm{C}(1)$ | C(5) | $-1.7$ |
| C(14) | $\mathrm{C}(10)$ | C(1) | C(5) | 176.4 |
| C(9) | C(10) | C(1) | $\mathrm{C}(2)$ | --176.7 |
| C(14) | $\mathrm{C}(10)$ | C(1) | C(2) | 1.5 |
| C(6) | C(7) | C(11) | C(12) | 17.7 |
| C(6) | C(7) | C(11) | C(13) | $-100 \cdot 3$ |
| C(6) | C(7) | C(11) | O(11) | $137 \cdot 4$ |
| C(8) | C(7) | C(11) | C(12) | $146 \cdot 6$ |
| C(8) | C(7) | C(11) | C(13) | $28 \cdot 6$ |

[^1]Table IV
(Continued)

| Atom 1 | Atom 2 | Atom 3 | Atom 4 | Angle |
| :---: | :---: | :---: | :---: | :---: |
| C(8) | C(7) | C(11) | O(11) | $-93.7$ |
| C(7) | $\mathrm{C}(11)$ | C(12) | $\mathrm{O}(6)$ | - 16.0 |
| C(7) | C(11) | $\mathrm{C}(12)$ | O(12) | 169.7 |
| C(13) | C(11) | C(12) | O (6) | $109 \cdot 0$ |
| C(13) | $\mathrm{C}(11)$ | C(12) | O(12) | - $65 \cdot 3$ |
| O(1) | $\mathrm{C}(11)$ | C(12) | $\mathrm{O}(6)$ | $-138.2$ |
| $\mathrm{O}(11)$ | C(11) | C(12) | $\mathrm{O}(12)$ | 47.6 |
| C(11) | $\mathrm{C}(12)$ | O(6) | $\mathrm{C}(6)$ | $7 \cdot 2$ |
| $O(12)$ | $\mathrm{C}(12)$ | O(6) | C(6) | --178.1 |
| $\mathrm{C}(12)$ | O(6) | $\mathrm{C}(6)$ | C(7) | $4 \cdot 8$ |
| $\mathrm{C}(12)$ | O(6) | $\mathrm{C}(6)$ | C(5) | $-121 \cdot 3$ |
| C(7) | C(11) | O(11) | C(16) | - 64.1 |
| $\mathrm{C}(12)$ | $\mathrm{C}(11)$ | $O(11)$ | $\mathrm{C}(16)$ | $52 \cdot 1$ |
| $\mathrm{C}(13)$ | C(11) | O(11) | $\mathrm{C}(16)$ | $166 \cdot 7$ |
| C(11) | O(1) | $\mathrm{C}(16)$ | $O(16)$ | 0.3 |
| C(11) | O(11) | C(16) | C(17) | $-179.9$ |
| C(7) | $\mathrm{C}(8)$ | $\mathrm{O}(8)$ | $\mathrm{C}(18)$ | -160.3 |
| C(9) | C(8) | $\mathrm{O}(8)$ | $\mathrm{C}(18)$ | $79 \cdot 4$ |
| C(8) | $\mathrm{O}(8)$ | C(18) | C(19) | $-179.1$ |
| C(8) | $\mathrm{O}(8)$ | C(18) | O(18) | 0.7 |
| $\mathrm{O}(8)$ | C(18) | $\mathrm{C}(19)$ | C(20) | $147 \cdot 2$ |
| $\mathrm{O}(18)$ | C(18) | C(19) | $\mathrm{C}(20)$ | - 32.6 |
| C (18) | C(19) | $\mathrm{C}(20)$ | $\mathrm{C}(21)$ | - 3.1 |
| C (22) | C(19) | $\mathrm{C}(20)$ | $\mathrm{C}(21)$ | $174 \cdot 6$ |

values of which occur in two different ranges, $\delta 3 \cdot 2-3 \cdot 9$ or $4 \cdot 5-4 \cdot 9$. At the same time $H(6)$ should not be affected more distinctly by substitution effects, because structural changes take place on carbons $C(8), C(11)$ or $C(15)$, while the neighbouring $C(5)$ and $C(7)$ remain without change. Hence, it may be concluded that there is a dependence between the chemical shift of $H(6)$ and the type of annellation of the lactone cycle. Of the two compounds $I$ and $X I$, the structures of which were demonstrated by X-ray analysis, lactucin (XI) with the trans-annellated lactone and $\delta_{\mathrm{H}(6)}=3.65$ belongs to the first group and lactone $I$ with the cis-annellated lactone and $\delta_{\mathrm{H}(6)}=$ $=4.66$ to the second one. A further striking difference between the NMR parameters of compounds $X I$ and $I$ is in the value of the geminal coupling constant $J_{9,9^{\prime}}$ (13.8 and $19 \cdot 2 \mathrm{~Hz}$, respectively). A detailed analysis of data showed that in all cases with an indicated $J_{9,9}$, value the low absolute value of this constant ( 13 to 14 Hz ) is accompanied by low $\delta_{H(6)}$ values ( $3 \cdot 2-3 \cdot 6$ ), and high $J_{9,9}$, values ( 18 to
$19 \cdot 5 \mathrm{~Hz}$ ) accompany higher $\delta_{H(6)}$ values ( $4 \cdot 5-4 \cdot 9$ ). This indicates the possibility of differentiating trans- and cis-lactones of type $I X$ and $X$ on the basis of $\delta_{H(6)}$ and $J_{9,9^{\prime}}$. The distinct downfield shift of $\mathrm{H}(6)$ in the case of cis-lactones $X$ (in contrast to trans-lactones $I X$ ) is probably a consequence of the van der Waals effect ${ }^{25}$ which has its origin in the steric interaction of cis-oriented hydrogens $\mathrm{H}(6)$ and $\mathrm{H}(7)$. This interaction does not occur in trans-lactones. A similar effect should be also detectable

## TRANS




POSSIBLE CONFORMATIONS OF RING B


A
$\Phi_{5,6}\left(J_{5,6}\right): \quad 160(\geq 10)$
$\Phi_{6,7}\left(J_{6,7}\right): \quad 170$ ( $>10$ )
$\Phi_{7,8 \alpha}\left(J_{7,8 \alpha}\right): \quad 60 \quad$ (2.5-3.5
$\Phi_{7,8 \beta}\left(J_{7,8 \beta}\right): \quad 180 \quad(>10)$
$\delta_{H-6}:$
$3.2-3.9$
C


| $150-170$ | $(>9)$ | 160 | $(\geq 10)$ |
| ---: | :--- | ---: | :--- |
| $0-30$ | $(11-7.5)$ | 60 | $(2.5-3.5)$ |
| $50-70$ | $(4.5-1.5)$ | 60 | $(2.5-3.5)$ |
| $170-180$ | $(>10)$ | 60 | $(2.5-3.5)$ |

[D]
$160(\geq 10)$
150-170 (>9)
( $\geq 10$ )
$170(>10)$
20 (~9)
170-180 $1>10$ )
60 (25-3.5)

$\Psi_{1}, \Psi_{2}:$
$\left|\Delta J_{9 \alpha, 9 \beta}\right|$ :
30,90
$\left|\jmath_{9 \alpha, 9 \beta}\right|:$
$\sim 0$
$4.5-4.9$


30,30

$\sim 4 \sim 0$
$\backsim 17.5-19.5 \ldots$

Fig. 2
Conformational and ${ }^{1} \mathrm{H}$ NMR characteristics of trans- and cis-2-oxoguai-1(10)3-dien-6,12-olides
on hydrogen $H(7)$. However, the shift of $H(7)$ is distinctly affected by the substitution at $\mathrm{C}(8)$ and $\mathrm{C}(11)$ and it is thus not generally utilisable for the differentiation of cisand trans-lactones. As for the $J_{9,9}$, value its dependence on the orientation to the neighbouring double bond $\mathrm{C}(10)=\mathrm{C}(1)$ may be expected. As shown in Fig. 2, in cis--lactones in the most probable conformation $C$ there exist optimum conditions for a maximal hyperconjugation contribution ( $\Delta J \geqq 4 \mathrm{~Hz}$ ) of the $\pi$-orbitals of the double bond, and thus also for the observation of high absolute $J_{9.9}$, values. In trans--lactones $I X$ in conformation $A$ the contribution $\Delta J$ is minimum ( $\approx 0$ ), and it should not exceed $\approx 2 \mathrm{~Hz}$ even in conformation $B$. Hence it is evident that the criteria summarized in Fig. 2 have a logical explanation.

The ${ }^{1} \mathrm{H}$ NMR data of the seven-membered ring hydrogens in so far described trans-lactones of type $I X$, with the structures $X I-X X I X$, which are consistent with the above mentioned NMR criteria, are surveyed in Table VI. Distinctly different

Table V
Proton and carbon-13 NMR parameters of lactone $I$ in deuteriochloroform

| Proton | $\delta_{\mathrm{H}}$ | $\left(J_{1.1}\right.$ ) | Carbon | $\delta_{C}$ |
| :---: | :---: | :---: | :---: | :---: |
| H(3) | 6.21 p | $\left(J_{3,15}=1.4 ; J_{3,5}=1.4\right)$ | C(1) | 129.05 |
| H(5) | 3.58 bd | $\left(J_{5,6}=11 \cdot 4 ; J_{5,3}=1 \cdot 4\right.$; | C(2) | 194.97 |
|  |  | $\left.J_{5,9}=1 \cdot 1 ; J_{5.9^{\prime}}==1 \cdot 4\right)$ | C(3) | $136 \cdot 13$ |
| H(6) | 4.66 dd | $\left(J_{6,5}==11 \cdot 4 ; J_{6,7}=9 \cdot 9\right)$ | C(4) | $169 \cdot 12$ |
| H(7) | 3.57 dd | $\left(J_{7,6}=9 \cdot 9 ; \mathrm{J}_{7,8}=11 \cdot 2\right)$ | C(5) | $48 \cdot 00$ |
| H (8) | 5.59 dt | $\left(J_{8,7}=-11 \cdot 2 ; J_{8,9}==3 \cdot 4\right.$; | C(6) | 78.43 |
|  |  | $\left.J_{8,9} \cdots=10 \cdot 9\right)$ | C(7) | $47 \cdot 31$ |
| H(9) | 2.91 bdd | $\left(J_{9,9}=19 \cdot 2: J_{9,8}=3 \cdot 4\right.$; | C(8) | 67.02 |
|  |  | $J_{9,5}=1 \cdot 1 ; J_{9,14} \neq 0$ ) | C(9) | 43.97 |
| $\mathbf{H}\left(9^{\prime}\right)$ | 2.49 bdd | $\left(J_{9^{\prime}, 9}=19 \cdot 2 ; J_{9^{\prime}, 8}=10 \cdot 9\right.$; | C(10) | $145 \cdot 15$ |
|  |  | $\left.J_{9^{\prime}, 5}=1 \cdot 4 ; J_{9^{\prime}, 14} \neq 0\right)$ | C(11) | 77.93 |
| H(13) | 1.60 s | - | C(12) | 173.27 |
| H(14) | 2.25 bs | - | $\mathrm{C}(13)$ | $20 \cdot 00^{a}$ |
| H(15) | 2.25 bs | -- | C(14) | $20 \cdot 5{ }^{\text {a }}$ |
| OAc | $2 \cdot 10 \mathrm{~s}$ | - -- | C(15) | $20 \cdot 29^{\text {a }}$ |
| OAng H(3') | 6.23 qq | $\left(J_{3^{\prime}, 4^{\prime}}=7 \cdot 3 ; J_{3^{\prime}, 5^{\prime}}=1 \cdot 5\right)$ | Ester gro |  |
| $\mathrm{H}\left(4^{\prime}\right)$ | 2.05 dq | $\left(J_{4^{\prime}, 3^{\prime}}=7 \cdot 3 ; J_{4^{\prime}, 5^{\prime}}=1.5\right)$ | OAc $\mathrm{C}=\mathrm{O}$ | 169.91 |
| $\mathrm{H}\left(5^{\prime}\right)$ | 1.92 p | $\left(J_{5^{\prime}, 4^{\prime}}=J_{5^{\prime}, 3^{\prime}}:=1.5\right)$ | $\mathrm{CH}_{3}$ | $20 \cdot 81^{\text {a }}$ |
|  |  |  | OAng C(1') | $166 \cdot 29$ |
|  |  |  | C(2') | $126 \cdot 60$ |
|  |  |  | C(3') | 141.27 |
|  |  |  | $\mathrm{C}\left(4^{\prime}\right)$ | 15.93 |
|  |  |  | C(5) | $20 \cdot 29^{\text {a }}$ |

[^2]


XCI


XIII

©

Any $\quad\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right), \mathrm{CH} . \mathrm{CH}_{3} ; \mathrm{BzI}=\mathrm{COC}_{6} \mathrm{H}_{5} ; \mathrm{Ver}=\mathrm{COC}_{6} \mathrm{H}_{3}\left(\mathrm{OCH}_{3}\right)_{2}(3,4) ; \mathrm{Ac} \quad \mathrm{COCH}_{3}\right.$ : Sen :- $\mathrm{COCH}=-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} ; \quad$ Ans $=\mathrm{COC}_{6} \mathrm{H}_{4}\left(\mathrm{OCH}_{3}\right)(4): \quad \mathrm{MaC}=\mathrm{COC}\left(\mathrm{CH}_{3}\right), \mathrm{CH}_{2} ; \quad$ i But $=$ $=\mathrm{COCH}\left(\mathrm{CH}_{3}\right)_{2}$; Phat- $\mathrm{OH}=\mathrm{COCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}(4)$

Table VI.
Proton NMR parameters of seven-membered ring in trins-lactones

| Compound | $\begin{aligned} & \mathrm{H}(5) \\ & \left(J_{5.6}\right) \end{aligned}$ | $\begin{aligned} & \mathrm{H}(6) \\ & \left(J_{6,7}\right) \end{aligned}$ | $\begin{aligned} & \mathrm{H}(7) \\ & \left(J_{7.8}\right) \end{aligned}$ | $\begin{gathered} H(8) \\ \left(J_{8.9} ; J_{8.9^{\prime}}\right) \end{gathered}$ | $\begin{gathered} \mathrm{H}(9) \quad \mathrm{H}\left(9^{\prime}\right) \\ \left(J_{9.9^{\prime}}\right) \end{gathered}$ | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Matricarin (XII) | $\begin{gathered} 3 \cdot 40 \\ (10 \cdot 2) \end{gathered}$ | $\begin{aligned} & 3 \cdot 72 \\ & (9 \cdot 8) \end{aligned}$ | $\begin{gathered} 2 \cdot 32 \\ (10 \cdot 1) \end{gathered}$ | $\begin{gathered} 4 \cdot 84 \\ (10 \cdot 8 ; 2 \cdot 1) \end{gathered}$ | $\begin{gathered} 2.72 \quad 2.39 \\ (13.7) \end{gathered}$ | 32 |
| Lactucopicrin ${ }^{\text {( }}$ (XIII) | $\begin{gathered} 3 \cdot 5-3 \cdot 9 \\ (b) \end{gathered}$ | $\underset{\left({ }^{b}\right)}{3 \cdot 5-3 \cdot 9}$ | $\begin{gathered} 3 \cdot 33 \\ \left({ }^{b}\right) \end{gathered}$ | $\begin{gathered} 5.00 \\ (10 ; 2 \cdot 5) \end{gathered}$ | $\begin{gathered} 2.73 \quad 2.46 \\ (12.5) \end{gathered}$ | 33 |
| Desacetoxymatricarin $(X I V)$ | $\begin{gathered} 3 \cdot 35 \\ (10 \cdot 5) \end{gathered}$ | $\begin{gathered} 3 \cdot 54 \\ (9-10) \end{gathered}$ | $b$ | $b$ | $b \quad b$ | 34 |
| I $1 \beta$,13-Dihydrolactu$\operatorname{cin}(X V)$ | $\begin{aligned} & 3.57 \\ & (10) \end{aligned}$ | $\begin{aligned} & 3.65 \\ & (10) \end{aligned}$ | $\begin{aligned} & 2 \cdot 13 \\ & (10) \end{aligned}$ | $\begin{gathered} 3.75 \\ (11 ; 1) \end{gathered}$ | $\begin{gathered} 2 \cdot 71 \quad 2 \cdot 39 \\ (14) \end{gathered}$ | 35 |
| XXVI | $\begin{align*} & 3 \cdot 58 \\ & (10) \tag{b} \end{align*}$ | $\begin{aligned} & 3 \cdot 81 \\ & (10) \end{aligned}$ | $2 \cdot 00$ | $1.87$ <br> (b) | $2.45 \quad 2.35$ <br> (b) | 36 |
| XXV | $\begin{aligned} & 4 \cdot 31 \\ & (10) \end{aligned}$ | $\begin{aligned} & 3 \cdot 65 \\ & (10) \end{aligned}$ | $\begin{aligned} & 2 \cdot 50 \\ & (10) \end{aligned}$ | $\begin{gathered} 4 \cdot 88 \\ (11 ; 2) \end{gathered}$ | $\begin{gathered} 2.50 \quad 2.81 \\ (13.5) \end{gathered}$ | 37 |
| Achilin ( $X X V I I$ ) | $\begin{aligned} & 3.40 \\ & (10) \end{aligned}$ | $\begin{array}{r} 3 \cdot 84 \\ (9) \end{array}$ | $b$ | $b$ | $b \quad b$ | 38 |
| Grossmizin ( $X X$ VIII) | $\begin{aligned} & 3 \cdot 40 \\ & (10) \end{aligned}$ | $\begin{aligned} & 3 \cdot 86 \\ & (10) \end{aligned}$ | $\begin{gathered} b \\ (10) \end{gathered}$ | $\begin{gathered} 3 \cdot 74 \\ \left({ }^{b} ;{ }^{b}\right) \end{gathered}$ | $b \quad b$ | 39 |
| 8-Acctoxyachilin $(X X I X)$ | $\begin{aligned} & 3 \cdot 41 \\ & (10) \end{aligned}$ | $\begin{aligned} & 3 \cdot 90 \\ & (10) \end{aligned}$ | $\begin{gathered} b \\ (10) \end{gathered}$ | $\left(b,{ }^{4 \cdot 76}\right)$ | $b \quad b$ | 39 |
| Dehydroleucodin $(X V I)$ | $\begin{aligned} & 3.60 \\ & (10) \end{aligned}$ | $\begin{aligned} & 3 \cdot 60 \\ & (10) \end{aligned}$ | $\begin{gathered} 2 \cdot 85 \\ (10 ; 3) \end{gathered}$ | $\begin{gathered} 1 \cdot 40 ;^{b} \\ (12 ; 2 ; 3 ; 5) \end{gathered}$ | $\underbrace{2 \cdot 20}_{(13)} \quad b$ | 40 |
| XVII | $\begin{aligned} & 3 \cdot 70 \\ & (10) \end{aligned}$ | $\begin{aligned} & 3 \cdot 27 \\ & (10) \end{aligned}$ | $\begin{aligned} & 3 \cdot 22 \\ & (10) \end{aligned}$ | $\begin{gathered} 3 \cdot 98 \\ (10 ; 2 \cdot 5) \end{gathered}$ | $b$ b | 41 |
| 11,13-Dehydromatricarin ( $X V I I I$ ) | $\begin{aligned} & 3 \cdot 52 \\ & (10) \end{aligned}$ | $\begin{aligned} & 3 \cdot 72 \\ & (10) \end{aligned}$ | $\begin{aligned} & 3 \cdot 27 \\ & (10) \end{aligned}$ | $\begin{gathered} 4.92 \\ (10 ; 2) \end{gathered}$ | $\begin{gathered} 2.73 \quad 2.47 \\ (13) \end{gathered}$ | 41 |
| XIX | $3 \cdot 31$ <br> (b) | $\begin{gathered} 3 \cdot 31 \\ (10 \cdot 5) \end{gathered}$ | $\begin{gathered} 3 \cdot 26 \\ (10 \cdot 5) \end{gathered}$ | $\begin{gathered} 4.93 \\ (10 \cdot 5 ; 2 \cdot 2) \end{gathered}$ | $\begin{gathered} 2.50 \quad 2.74 \\ (13.5) \end{gathered}$ | 37 |
| $X X$ | $\begin{gathered} 3.67 \\ (b) \end{gathered}$ | $\begin{gathered} 3.67 \\ (10 \cdot 5) \end{gathered}$ | $\begin{gathered} 3 \cdot 20 \\ (10 \cdot 5) \end{gathered}$ | $\begin{gathered} 4 \cdot 99 \\ (10 \cdot 5 ; 2) \end{gathered}$ | $\begin{gathered} 2.75 \quad 2.45 \\ (13.5) \end{gathered}$ | 37 |
| $X X I$ | $3 \cdot 67$ <br> (b) | $\begin{gathered} 3 \cdot 67 \\ (10 \cdot 5) \end{gathered}$ | $\begin{gathered} 3 \cdot 20 \\ (10 \cdot 5) \end{gathered}$ | $\begin{gathered} 4.99 \\ (10.5 ; 2) \end{gathered}$ | $\begin{gathered} 2.76 \quad 2.56 \\ (13.5) \end{gathered}$ | 37 |
| XXII | $\begin{aligned} & 4 \cdot 11 \\ & (10) \end{aligned}$ | $\begin{aligned} & 3.65^{c} \\ & (10) \end{aligned}$ | $\begin{aligned} & 3 \cdot 37 \\ & (10) \end{aligned}$ | $\begin{gathered} 4 \cdot 95 \\ (10 ; 2 \cdot 5) \end{gathered}$ | $\begin{gathered} 2.58 \quad 2 \cdot 81 \\ (13) \end{gathered}$ | 37 |
| XXIII | $\begin{aligned} & 4 \cdot 12 \\ & (10) \end{aligned}$ | $\begin{aligned} & 3.67 \\ & (10) \end{aligned}$ | $\begin{aligned} & 3 \cdot 45 \\ & (10) \end{aligned}$ | $\begin{gathered} 5 \cdot 01 \\ (10 ; 2 \cdot 5) \end{gathered}$ | $\begin{gathered} 2 \cdot 62 \quad 2 \cdot 87 \\ (13) \end{gathered}$ | 37 |
| XXIV | $\begin{aligned} & 4 \cdot 13 \\ & (10) \end{aligned}$ | $\begin{aligned} & 3.67 \\ & (10) \end{aligned}$ | (10) | $\begin{gathered} 5 \cdot 05 \\ (10 ; 2 \cdot 5) \end{gathered}$ | $\begin{gathered} 2.87 \quad 2.58 \\ (13.5) \end{gathered}$ | 37 |
| Lactucin ( $X I$ ) | $\begin{aligned} & 3 \cdot 65 \\ & (10) \end{aligned}$ | $\begin{aligned} & 3 \cdot 60 \\ & (10) \end{aligned}$ | $\begin{aligned} & 3 \cdot 21 \\ & (9 \cdot 9) \end{aligned}$ | $\begin{gathered} 3 \cdot 99 \\ \left(9 \cdot 9 ;{ }^{b}\right) \end{gathered}$ | $(13 \cdot 8)$ | 39 |

Table VII
Proton NMR parameters of seven-membered ring in cis-lactones

| Compound | $\begin{aligned} & H(5) \\ & \left(J_{5,6}\right) \end{aligned}$ | $\begin{aligned} & \mathrm{H}(6) \\ & \left(J_{6,7}\right) \end{aligned}$ | $\begin{gathered} \mathrm{H}(7) \\ \left(J_{7,8}\right) \end{gathered}$ | $\begin{gathered} \mathrm{H}(8) \\ \left(J_{8,9} ; J_{8,9^{\prime}}\right) \end{gathered}$ | $\begin{gathered} \mathrm{H}(9) \quad \mathrm{H}\left(9^{\prime}\right) \\ \left(J_{9,9^{\prime}}\right) \end{gathered}$ | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lactone $I$ | $\begin{gathered} 3 \cdot 58 \\ (11.4) \end{gathered}$ | $\begin{aligned} & 4 \cdot 66 \\ & (9 \cdot 9) \end{aligned}$ | $\begin{gathered} 3 \cdot 57 \\ (11 \cdot 2) \end{gathered}$ | $\begin{gathered} 5 \cdot 59 \\ (3.4 ; 10.9) \end{gathered}$ | $\begin{gathered} 2 \cdot 91 \quad 2 \cdot 49 \\ (19 \cdot 2) \end{gathered}$ | $a$ |
| Angeloyloxypruteninone ( $X X X$ ) | $\begin{gathered} 3 \cdot 61 \\ (11 \cdot 4) \end{gathered}$ | $\begin{aligned} & 4 \cdot 72 \\ & (9 \cdot 9) \end{aligned}$ | $\begin{gathered} 3.63 \\ (11.4) \end{gathered}$ | $\begin{gathered} 5 \cdot 65 \\ (3 \cdot 5 ; 10 \cdot 7) \end{gathered}$ | $\begin{gathered} 2 \cdot 90 \quad 2 \cdot 52 \\ (19 \cdot 1) \end{gathered}$ | $a$ |
| Fegvolide (XXXII) | $\begin{gathered} 3 \cdot 66 \\ (10 \cdot 2) \end{gathered}$ | $\begin{gathered} 4.76 \\ (10.0) \end{gathered}$ | $\begin{gathered} 3.73 \\ (11) \end{gathered}$ | $\begin{gathered} 5 \cdot 78 \\ (4 ; 11) \end{gathered}$ | $\begin{gathered} 2.96 \quad 2.56 \\ (18) \end{gathered}$ | 28 |
| Ierugolide ( $X X X 1 / I$ ) | $\begin{gathered} 3.70 \\ (10 \cdot 2) \end{gathered}$ | $\begin{gathered} 4 \cdot 81 \\ (10 \cdot 0) \end{gathered}$ | $\begin{gathered} 3.77 \\ (11.0) \end{gathered}$ | $\begin{gathered} 5.81 \\ (3.5 ; 11 \cdot 0) \end{gathered}$ | $\begin{gathered} 3 \cdot 14 \quad 2 \cdot 61 \\ (19 \cdot 5) \end{gathered}$ | 29 |
| Giferolide $\left(X X X I I^{\prime}\right)$ | $\begin{array}{r} 3.69 \\ (10 \cdot 2) \end{array}$ | $\begin{gathered} 4 \cdot 80 \\ (10 \cdot 0) \end{gathered}$ | $\begin{gathered} 3.78 \\ (11.0) \end{gathered}$ | $\begin{gathered} 5 \cdot 80 \\ (3 \cdot 5 ; 11 \cdot 0) \end{gathered}$ | $\begin{gathered} 3.08 \quad 2 \cdot 60 \\ (19 \cdot 5) \end{gathered}$ | 29 |
| Gigantolide ( $X X X V^{\text {" }}$ ) | $\begin{gathered} 3.61 \\ (10 \cdot 2) \end{gathered}$ | $\begin{gathered} 4 \cdot 72 \\ (10 \cdot 0) \end{gathered}$ | $\begin{gathered} 3 \cdot 72 \\ (11 \cdot 0) \end{gathered}$ | $\begin{gathered} 5 \cdot 79 \\ (3 \cdot 5 ; 11 \cdot 0) \end{gathered}$ | $\begin{gathered} 3.04 \quad 2.56 \\ (19.5) \end{gathered}$ | 29 |
| Malafil ( $X X X V I)$ | $\begin{gathered} 3 \cdot 63 \\ (11 \cdot 0) \end{gathered}$ | $\begin{gathered} 4 \cdot 72 \\ (10 \cdot 0) \end{gathered}$ | $\begin{gathered} 3.67 \\ (10 \cdot 3) \end{gathered}$ | $\begin{gathered} 5 \cdot 73 \\ (3 \cdot 9 ; 10 \cdot 3) \end{gathered}$ | $\begin{gathered} 3 \cdot 04 \quad 2 \cdot 56 \\ (18 \cdot 1) \end{gathered}$ | 29,30 |
| $\begin{aligned} & \text { Malafilin } \\ & (X X X \subset I I) \end{aligned}$ | $\begin{gathered} 3 \cdot 63 \\ (11 \cdot 0) \end{gathered}$ | $\begin{gathered} 4.72 \\ (10.0) \end{gathered}$ | $\begin{gathered} 3.67 \\ (10 \cdot 3) \end{gathered}$ | $\begin{gathered} 5 \cdot 73 \\ (3 \cdot 9 ; 10 \cdot 3) \end{gathered}$ | $\begin{gathered} 3.02 \quad 2 \cdot 56 \\ (18 \cdot 1) \end{gathered}$ | 29,30 |
| Malafilinin (III) | $\begin{gathered} 3.65 \\ (10.2) \end{gathered}$ | $\begin{gathered} 4 \cdot 73 \\ (10) \end{gathered}$ | $\begin{gathered} 3 \cdot 72 \\ (11) \end{gathered}$ | $\begin{gathered} 5 \cdot 76 \\ (3 \cdot 5 ; 11) \end{gathered}$ | $\begin{gathered} 3.04 \quad 2.59 \\ (19.5) \end{gathered}$ | 5,29 |
| (forin (XXXVIII) | $\begin{gathered} b \\ (11 \cdot 8) \end{gathered}$ | $\begin{gathered} 4 \cdot 61 \\ (10) \end{gathered}$ | $\begin{array}{r} b \\ (11) \end{array}$ | $\begin{array}{r} 5 \cdot 50 \\ (2 ; 11) \end{array}$ | $b$ | 2 |
| Olgin (XXXIX) | $\begin{gathered} b \\ (11.8) \end{gathered}$ | $\begin{gathered} 4 \cdot 61 \\ (10) \end{gathered}$ | $\begin{gathered} b \\ (11) \end{gathered}$ | $\begin{gathered} 5 \cdot 49 \\ (2 ; 11) \end{gathered}$ | $b$ | 2 |
| Olgoferin ( $X L$ ) | $\begin{gathered} b \\ (11 \cdot 8) \end{gathered}$ | $\begin{aligned} & 4 \cdot 70 \\ & (10) \end{aligned}$ | $\begin{gathered} b \\ (11) \end{gathered}$ | $\begin{array}{r} 5 \cdot 55 \\ (2 ; 11) \end{array}$ | b | 2 |
| Talasin $\mathrm{A}^{c}(X X X)$ | $\begin{gathered} 3 \cdot 60 \\ (10 \cdot 2) \end{gathered}$ | $\begin{gathered} 4 \cdot 73 \\ (10 \cdot 0) \end{gathered}$ | $\begin{gathered} 3 \cdot 65 \\ (11 \cdot 0) \end{gathered}$ | $\begin{gathered} 5 \cdot 66 \\ (3 \cdot 5 ; 11 \cdot 0) \end{gathered}$ | $\begin{gathered} 2 \cdot 91 \quad 2.48 \\ (19 \cdot 5) \end{gathered}$ | 5,29,31 |
| Talasin $\mathrm{B}^{d}(X L I)$ | $\begin{gathered} b \\ (11.8) \end{gathered}$ | $\begin{aligned} & 3 \cdot 90^{e} \\ & (10) \end{aligned}$ | (11) | $\begin{array}{r} 5 \cdot 20 \\ (2 ; 11) \end{array}$ | b | 2 |
| Badk hyzin (XXXI) | $\begin{gathered} 3 \cdot 70 \\ (10) \end{gathered}$ | $\begin{aligned} & 4 \cdot 55 \\ & (7 \cdot 5) \end{aligned}$ | $\begin{array}{r} b \\ (10) \end{array}$ | $\begin{array}{r} 5 \cdot 55 \\ (4 ; 10) \end{array}$ | b | 26, 27 |

${ }^{a}$ NMR parameters from this paper; ${ }^{b}$ the values of parameters are not given in literature; ${ }^{c}$ apparently identical with angeloyloxypruteninone $(X X X)$; data from ${ }_{6}^{2}{ }_{6}^{2} \mathrm{H}_{6}$ solution; ${ }^{e}$ very probably erroneous value - it should be corrected to approximately $4 \cdot 7$, similarly as it was done in the case of talasin $\mathrm{A}\left(\mathrm{refs}^{2,29,31}\right)$.

[^3]values for $\delta_{\mathbf{H}(6)}$ or $J_{9,9}$, are observed, however, in all guaianolides of type $V$ from Umbelliferae described so far, the stereostructures of which were formulated the same as before for lactone $I$, in the sense of trans-lactones of type $I X$. They are angeloyloxypruteninone ${ }^{1 *}$, badkhyzin ${ }^{26,27}$, fegvolide ${ }^{28}$, ferugolide ${ }^{29}$, gigantolide ${ }^{29}$, giferolide ${ }^{29}$, malafil ${ }^{29,30}$, malafilin ${ }^{29,30}$, malafilinin ${ }^{5,30}$, oferin ${ }^{2}$, olgin ${ }^{2}$, olgoferin ${ }^{2}$, talasin $A^{2,29,31 *}$, and talasin $B^{2}$. On the basis of the above discussed arguments we consider that it is necessary to correct their structures to cis-lactones with correct structures: angeloyloxypruteninone $(X X X)$, badkhyzin ( $X X X I$ ), fegvolide $(X X X I I)$, ferugolide ( $X X X I I I$ ), giferolide $(X X X I V)$, gigantolide $(X X X V)$, malafil (XXXVI), malafilin (XXXVII), malafilinin (III), oferin (XXXVIII), olgin (XXXIX), olgoferin $(X L)$, talasin $\mathrm{A}(X X X)^{*}$ and talasin $\mathrm{B}(X L I)$. Therefore their ${ }^{1} \mathrm{H}$ NMR data are given among cis-lactones in Table VII. As regards prutenin and acetoxyisopruteninone ${ }^{1}$ we propose a correction of their structures in the sense of formula $X L I I$ for prutenin and $X L I I I$ for acetoxyisopruteninone on the basis of $\delta_{\mathrm{H}(6)}$ ( $4 \cdot 60$ and $4 \cdot 74$, respectively).

Finally it may be stated that all the so far isolated and described native guaianolides from Umbelliferae are structurally related and that all can be derived from the basic type, $1 \beta \mathrm{H}, 5 \beta \mathrm{H}, 6 \alpha \mathrm{H}, 7 \alpha \mathrm{H}$-guaian-6,12-olide (IV). This type of guaianolides (ref. ${ }^{26}$ ) has so far only been found in guaianolides from the species of the Umbelliferae family, of which it seems typical, in contrast to the guaianolides from the Compositae family for which the basic $1 \alpha \mathrm{H}, 5 \alpha \mathrm{H}, 6 \beta \mathrm{H}, 7 \alpha \mathrm{H}$-guaian- 6 , 12 -olide skeleton seems more typical.

## EXPERIMENTAL

The melting point was determined on a Kofler block and it was not corrected. For column chromatography silica gel according to Pitra and Stěrba ( $30-60 \mathrm{~m} \mathrm{\mu}$, deactivated by addition of $11 \%$ of water) was used, while silica gel G Merck according to Stahl was used for thin layer chromatography. The IR spectrum was measured in chloroform on a Perkin-Elmer PE 580 instrument. The mass spectrum was measured on an AEI MS 902 spectrometer. The NMR spectra were measured on a FT-NMR spectrometer Varian XL-200 ( ${ }^{1} \mathrm{H}$ on $200 \mathrm{MHz} ;{ }^{13} \mathrm{C}$ on 50.3 MHz ) in deuteriochloroform with tetramethylsilane as internal standard. The circular dichroism was measured on a Roussel-Jouan CD 185 dichrographe, in methanol.

2-Oxo- $8 \alpha$-angeloyloxy-11 $\alpha$-acetoxy- $5 \beta \mathrm{H}, 6 \alpha \mathrm{H}, 7 \alpha \mathrm{H}$-guai-1(10),3-dien-6,12-olide (I)
The ground, dried roots $(8.5 \mathrm{~kg})$ of Laserpitium prutenicum L., collected in Poland in 1973 were extracted exhaustively with light petroleum at room temperature. After distilling off of the solvent the extract weighed 48 g . One part of it ( 33 g ) was chromatographed on a silica gel column ( 1200 g ) with light petroleum-ether mixture with increasing concentration of the more polar solvent. Repeated column chromatography with $20 \%$ ether in light petroleum gave 2-oxo-8 $\alpha$ --angeloyloxy-11 $\alpha$-acetoxy- $5 \beta \mathrm{H}, 6 \alpha \mathrm{H}, 7 \alpha \mathrm{H}$-guai-1(10),3-dien-6,12-olide ( $I ; 142 \mathrm{mg}$ ), m.p. 142 to

* Talasin $\mathrm{A}^{2,29,31}$ is evidently identical with angeloyloxypruteninone ${ }^{1}$ as evident from the comparison of their ${ }^{1} \mathrm{H}$ NMR data (Table VII).

144 C . IR spectrum $\left(\mathrm{cm}^{-1}\right.$ ): 1793 ( $\gamma$-lactone), 1739,1232 (acetate), 1704 ( $\alpha, \beta$-unsaturated ester, 1688 ( $\alpha, \beta$-unsaturated ketone), 1615,1637 (double bond). Mass spectrum ( $m / z$ ): 402 (M), $342(\mathrm{M}-60), 302(\mathrm{M}-100), 242(\mathrm{M}-60-100), 83\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{CO}^{+}\right), 55\left(\mathrm{C}_{4} \mathrm{H}_{7}^{+}\right) . \mathrm{CD}$ spectrum (nm, $\Delta e$ ): 345, $-0.4 ; 295, \pm 0 ; 279,-0.4$.

## X-Ray Structural Analysis of 1

Crystal data: $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{7}$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=12 \cdot 510(5), b=15.976(7), c=10 \cdot 629(2)$ $\AA, U=2124(2) \AA^{3}, Z=4, D_{\mathrm{m}}=1.24(3), D_{\mathrm{c}}=1.258 \mathrm{~g} \mathrm{~cm}^{-3}, T=295 \mathrm{~K}$.

Iata collection: A crystal of dimensions $1.6 \times 1.1 \times 0.7 \mathrm{~mm}$ was used for data collection in Chapel Hill on an Enraf-Nonius CAD 4 diffractometer equipped with a molybdenum tube $\left(\lambda K_{\alpha}==0 \cdot 7107 \AA\right)$ and a graphite monochromator. Cell constants were obtained by a least squares refinement of the positions of 25 reflections with $22^{\circ}<2 \theta$ (Mo) $<32^{\circ} .2754$ independent intensities were gathered in a $\omega-20$ scan mode in the region $2^{\prime}<20(\mathrm{Mo})<55^{\circ}$; there was very little observable diffracted intensity at value of $2 \theta(\mathrm{Mo})>55^{\circ}$. The data were corrected for backgrounds and for Lorentz-polarization effects, but not for absorption, and assigned estimated standard deviations using the method of Ibers and coworkers ${ }^{42}$ with $p=0.025$. Of the 2754 independent data, only 1279 reflections had $I>2 \sigma(I)$, and only these data were used in the subsequent structure refinement.

Solution and refinement of the structure: The structure was solved by direct methods ${ }^{43}$ and refined by full-matrix least-squares techniques. All refinements were carried out on $F$, the function minimised being $\sum w(|F \mathrm{o}|-|F \mathrm{c}|)^{2}$, where the weights $w$ are defined as $4 F \mathrm{o}^{2} / \sigma^{2}\left(F \mathrm{o}^{2}\right)$. The hydrogen atoms attached to carbon atoms were placed in calculated positions assuming $\mathrm{C}-\mathrm{H}$ distances of $0.95 \AA$, and these positions were not refined; all other atoms were refined anisotropically. The final values of the agreement factors $R_{1}=\sum| | F \mathrm{o}|-|F \mathrm{c}|| / \sum|F \mathrm{o}|$ and $R_{2}=$ $=\left[\sum w(|F \mathrm{o}|-|F \mathrm{c}|)^{2} / \sum w|F \mathrm{o}|^{2}\right]^{1 / 2}$, were 0.069 and 0.067 , respectively, and the error in an observation of unit weight was $2 \cdot 6$. In the final least-squares cycle no parameter experienced a shift of more then 0.02 o , which indicates convergence. A final difference Fourier map was featureless, with no peak higher than 0.13 e $\AA^{-3}$. The final positional parameters, along with their standard deviations as estimated from the inverse matrix, are collected in Table I. Tables of anisotropic thermal parameters and observed and calculated structure amplitudes are available on request*. The absolute configuration of the molecule cannot be independently determined on the basis of the present crystallographic experiment, but the positions in Table I and elswhere were assigned on the assumption of the established configuration at $C(7)$.

## REFERENCES

1. Bohlmann F., Zdero C.: Chem. Ber. 104, 1611 (1971).
2. Konovalova O. A., Rybalko K. S., Sheichenko V. I., Pimenov M. G.: Khim. Prir. Soedin. 1975, 590.
3. Bagirov V. J., Sheichenko V. I., Abdullaeva I. K., Pimenov M. G.: Khim. Prir. Soedin. 1980, 843.
4. Pinar M., Rico M., Rodriguez B.: Phytochemistry 21, 1802 (1982).
5. Bagirov V. J., Sheichenko V. I., Gasanova R. J., Pimenov M. G.: Khim. Prir. Soedin. 1978, 810.
6. Pinar M., Rico M., Rodriguez B.: Phytochemistry 21, 735 (1982).

* D. J. Hodgson, University of North Carolina.

Collection Czechoslovak Chem. Commun. [Vol. 50j [1985]
7. Holub M.: Plenary Lectures of the 14th International IUPAC Symposium on the Chemistry of Natural Products, Poznañ, 1984, in press.
8. Malone J. F., Parves M., Karim A., McKervey M. A., Ahmad I., Bhatty M. K.: J. Chem. Soc., Perkin Trans. 2, 1980, 1963.
9. Fayos J., Perales A., Pinar M., Rico M., Rodriguez B.: Phytochemistry 22, 1983 (1983).
10. Pinar M., Rodriguez B., Rico M., Perales A., Fayos J.: Phytochemistry 22, 987 (1983).
11. Fischer N. H., Olivier E. J., Fischer H. D.: Prog. Chem. Org. Nat. Prod. 38,48 (1979).
12. Seamar F. C.: Botan. Rev. 48, 121 (1982).
13. Smítalová Z., Budě̌̌ínský M., Šaman D., Vašičková S., Holub M.: This Journal 49. 852 (1984).
14. Ruban G., Zabel V., Gensch K. H., Smalia H.: Acta Crystallogr. B 34, 1163 (1978).
15. Rychlewska U., Holub M., Buděsínský M., Smítalová Z.: This Journal 49, 2790 (1984).
16. Krstanović I., Karanović L., Stefanović M., Dermanović M.: Cryst. Struct. Commun. 10, 793 (1981).
17. Budě̌ínský M., Šaman D.: This Journal, in press.
18. Šaman D., Buděšinský M.: This Journal, in press.
19. Marr D. H., Stothers J. B.: Can. J. Chem. 43, 596 (1976).
20. Loots M. H., Weingarten L. R., Levin R. H.: J. Amer. Chem. Soc. 98, 4571 (1976).
21. Holub M., Budě̌̌inský M., Smítalová Z., Šaman D.: This Journal, in press.
22. Barfield M., Grant D. M.: J. Amer. Chem. Soc. 85, 1899 (1963).
23. Sternhell S.: Quart. Rev. 23, 236 (1969).
24. Samek Z.: This Journal 43, 3210 (1978).
25. Bhacca N. S., Williams D. H.: Applications of NMR Spectroscopy in Organic Chemistry, p. 183. Holden-Day, San Francisco 1964.
26. Serkerov S. V., Sheichenko V. I.: Khim. Prir. Soedin. 1970, 425.
27. Serkerov S. V.: Khim. Prir. Soedin. 1980, 629.
28. Savina A. A., Dukhovlinova L. I., Sklyar J. E., Pimenov M. G., Baranova J. V.: Khim. Prir. Soedin. 1979, 733.
29. Savina A. A., Fesenko D. A., Dukhovlinova L. I., Sklyar J. E., Pimenov M. G., Baranova J. V.: Khim. Prir. Soedin. 1979, 490.
30. Bagirov V. J., Sheichenko V. I., Gasanova R. J., Pimenov M. G.: Khim. Prir. Soedin. 1978, 445.
31. Konovalova O. A., Rybalko K. S., Pimenov M. G.: Khim. Prir. Soedin. 1973, 122.
32. Herz W., Ueda K.: J. Amer. Chem. Soc. 83, 1139 (1961).
33. Pyrek J. S.: Rocz. Chem. 51, 2165 (1967).
34. White E. H., Eguchi S., Marx J. N.: Tetrahedron 25, 2099 (1969).
35. Sarg T. M., Omar A. A., Khafagy S. M., Grenz M., Bohlmann F.: Phytochemistry 21, 1163 (1982).
36. Bohlmann F., Zdero C., Robinson H., King R. M.: Phytochemistry 20, 2029 (1981).
37. Bohlmann F., Jakupovic J., Abraham W. R., Zdero C.: Phytochemistry 20, 2371 (1981).
38. White E. H., Winter R. E. K.: Tetrahedron Lett. 1963, 137.
39. Bachelor F. W., Itô S.: Can. J. Chem. 51, 3626 (1973).
40. Bohlmann F., Zdero C.: Tetrahedron Lett. 1972, 621.
41. Bohlmann F., Zdero C.: Phytochemistry 17, 1595 (1978).
42. Corfield P. W. R., Doedens R. J., Ibers J. A.: Inorg. Chem. 6, 197 (1967).
43. Germain G., Main P., Woolfson M. M.: Acta Crystallogr. A 27, 368 (1971).

Translated by $\grave{Z}$. Procházka.


[^0]:    Collection Czechoslovak Chem. Commun. [Vol. 50] [1985]

[^1]:    Collection Czechoslovak Chem. Commun. [Vol. 50] [1985]

[^2]:    ${ }^{a}$ Assignment of signals can be interchanged.

[^3]:    " Data from pentadeuteriopyridine solution; ${ }^{b}$ the values of parameters are not given in literature;
    ${ }^{c}$ the evidently wrong value $2 \cdot 65$ (ref. ${ }^{37}$ ) was corrected to $3 \cdot 65$.

    Collection Czechoslovak Chem. Commun. [Vol. 50] [1985]

